• น้ำแข็งขั้วโลกเหนือเสี่ยงละลายหมดใน10ปี

    จากการตรวจสอบภาพถ่ายดาวเทียมของ ESA พบว่า แผ่นน้ำแข็งขนาด 900 คิวบิก กม. ได้ระเหยไปจากขั้วโลกเหนือภายในเวลาเพียง 1 ปี หรือน้ำแข็งขั้วโลกเหนือกำลังละลายเร็วกว่าที่นักวิทยาศาสตร์เคยคาดการณ์ไว้ถึง 50% ...

  • นายกฯ อินเดียยันเตรียมส่งยานสำรวจดาวอังคาร

    โปรเจกต์ดังกล่าวจะถือเป็นความคืบหน้าอีกขั้นของโครงการอวกาศอันทะเยอทะยานของอินเดีย ซึ่งเคยส่งยานสำรวจขึ้นไปบนดวงจันทร์เมื่อ 3 ปีก่อน และวาดภาพภารกิจมนุษย์อวกาศคนแรกในปี 2016 ...

  • นักบินอวกาศชาวมะกัน“นีล อาร์มสตรอง”เสียชีวิตแล้ว

    รายงานข่าวระบุว่า “นีล อาร์มสตรอง” เคยเข้ารับการผ่าตัดขยายหลอดเลือดหัวใจเมื่อช่วงต้นเดือนที่ผ่านมา หลังแพทย์พบอาการอุดตันที่หลอดเลือดแดงใหญ่ที่หัวใจ ขณะที่ครอบครัวของ “นีล อาร์มสตรอง” ออกแถลงการณ์ระบุว่า เขาเสียชีวิตระหว่างการผ่าตัดขยายหลอดเลือดหัวใจ และมีอาการติดเชื้อ แต่ไม่ได้ระบุว่าเสียชีวิตที่ไหน แต่เขาก็เป็นเสมือนกับวีรบุรุษของชาวอเมริกันผู้ถูกละเลย เพราะได้ทำหน้าที่อย่างเต็มภาคภูมิให้กับประเทศชาติในฐานะนักบินขับไล่แห่งกองทัพเรือสหรัฐ นักบินทดสอบ และ นักบินอวกาศ. ...

  • นักบินอวกาศ "เสินโจว 9" เปิด "นิทรรศการการเชื่อมต่อกันในอวกาศพร้อมมนุษย์ครั้งแรกของจีน" ที่ฮ่องกง

    นิทรรศการดังกล่าวจะเปิดให้ประชาชนเข้าชมฟรีต่อเนื่องกันเป็นเวลา 15 วัน โดยมีการจัดแสดงสิ่งของอันล้ำค่า 16 ชุด ภาพถ่ายที่เกี่ยวกับยานอวกาศ "เสินโจว 9" กว่า 100 ภาพ ภาพทั้งตัวของนักบินอวกาศ 3 คนในระบบ 3 มิติ ตลอดจนบันทึกเกี่ยวกับนักบินอวกาศทำการทดลองหลายรายการในสภาพไร้น้ำหนัก ทั้งนี้ผู้ชมจะสามารถเข้าใจปฏิบัติการการบินอวกาศของ "เสินโจว 9" และเรื่องราวต่างๆ ของนักบินอวกาศ 3 คนได้เพิ่มขึ้นอีกขั้น ...


นอกเหนือจากวิกฤตน้ำท่วมฉับพลันที่ถล่มกรุงมะนิลาของฟิลิปปินส์อย่างไม่ทันตั้งตัว และอีกหลายประเทศที่กำลังประสบกับภัยธรรมชาติอย่างเหนือความคาดหมาย ยังมีข้อมูลล่าสุดจากสำนักงานอวกาศแห่งยุโรป (ESA) ที่เตือนให้มนุษยชาติตระหนักว่า ขณะนี้ถึงเวลาแล้วที่ชาวโลกจะต้องตระหนักถึงภยันตรายจากภาวะโลกร้อน

จากการตรวจสอบภาพถ่ายดาวเทียมของ ESA พบว่า แผ่นน้ำแข็งขนาด 900 คิวบิก กม. ได้ระเหยไปจากขั้วโลกเหนือภายในเวลาเพียง 1 ปี หรือน้ำแข็งขั้วโลกเหนือกำลังละลายเร็วกว่าที่นักวิทยาศาสตร์เคยคาดการณ์ไว้ถึง 50%

นอกจากนี้ ยังมีการส่งเรือดำน้ำเพื่อทำการสำรวจความเปลี่ยนแปลงของแผ่นน้ำแข็งตั้งแต่เมื่อปี 2004 ซึ่งจากผลการสำรวจยืนยันว่า ยิ่งปริมาณน้ำแข็งละลายลงมากเท่าไร ระดับน้ำในทะเลยิ่งเพิ่มสูงขึ้นเป็นเงาตามตัว

หากน้ำแข็งละลายด้วยความเร็วในอัตรานี้ ขั้วโลกเหนืออาจปราศจากน้ำแข็งภายในเวลาเพียง 10 ปีนับจากนี้!

การละลายของน้ำแข็งขั้วโลกเหนือ จะเป็นสาเหตุให้ระดับน้ำทะเลทั่วโลกเพิ่มสูงขึ้น กลายเป็นภัยคุกคามต่อมหานครที่สำคัญๆ ของโลกซึ่งส่วนใหญ่ตั้งอยู่ริมหรือใกล้ชายทะเล รวมถึงกรุงเทพฯ

นอกเหนือจากปัญหาดังกล่าวแล้ว ยังอาจกลายเป็นชนวนความขัดแย้งระดับโลก เนื่องจากคาดว่าขั้วโลกเหนือเป็นแหล่งทรัพยากรพลังงานที่สำคัญ โดยเฉพาะน้ำมันและก๊าซธรรมชาติแหล่งท้ายๆ ของโลกที่ยังไม่ได้รับการสำรวจ รวมถึงอาจเป็นชนวนความขัดแย้งด้านการทำประมง เพราะหลังจากนั้นจะเกิดน่านน้ำสากลขึ้นใหม่ในพื้นที่ดังกล่าว

แต่ไม่มีปัญหาใดน่าหนักใจเท่ากับระดับน้ำทะเลที่จะกลืนกินแผ่นดินและมหานครทั่วโลก

การเปิดเผยของ ESA มีขึ้นหลังจากที่นักวิจัยจากมหาวิทยาลัยโคเปนเฮเกน อ้างว่า การละลายของแผ่นน้ำแข็งบนเกาะกรีนแลนด์ซึ่งอยู่ใกล้กับขั้วโลกเหนือและเป็นเกาะที่ใหญ่ที่สุดในโลก มีระดับการละลายที่ไม่ร้ายแรงและไม่ส่งผลให้ระดับน้ำทะเลเพิ่มสูงขึ้นอย่างที่หวั่นเกรงกัน

ทั้งนี้ จากภาพถ่ายดาวเทียมล่าสุดพบว่า น้ำแข็งบนเกาะกรีนแลนด์ละลายอย่างรวดเร็วจนน่าตกใจ ทำให้เกิดความวิตกว่าอาจส่งผลให้เกิดภาวะน้ำท่วมโลก เนื่องจากปริมาณน้ำแข็งบนเกาะกรีนแลนด์มีมากพอที่จะทำให้ระดับน้ำทะเลทั่วโลกเพิ่มขึ้นถึง 7 ม. หากละลายจนหมดเนื่องจากภาวะโลกร้อน

คณะนักวิทยาศาสตร์ที่ร่วมกันเขียนบทความในวารสารทางวิทยาศาสตร์ “Science” ระบุว่า การละลายของน้ำแข็งขั้วโลกเหนือรวมถึงเกาะกรีนแลนด์ เป็นการละลายตามธรรมชาติและจะมีการแข็งตัวเพิ่มขึ้นอีกครั้ง หรือที่เรียกว่า “ชีพจรของแผ่นน้ำแข็ง”

อย่างไรก็ตาม ชีพจรน้ำแข็งเริ่มผิดปกติเนื่องจากการละลายของน้ำแข็งเริ่มมีปริมาณมากขึ้น แต่การแข็งตัวเป็นแผ่นเช่นเดิมกลับมีอัตราที่ช้าและลดน้อยลง



ภาพถ่ายจากองค์การนาซาเผยให้เห็นพายุฝุ่นบนพื้นผิวดาวอังคาร


เอเอฟพี - อินเดียมีแผนส่งยานสำรวจอวกาศขึ้นไปโคจรรอบดาวอังคาร นายกรัฐมนตรีมานโมฮัน ซิงห์ ยืนยันในวันนี้ (15) หลังมีรายงานข่าวว่าภารกิจดังกล่าวมีกำหนดเปิดฉากในปลายปีหน้า

โปรเจกต์ดังกล่าวจะถือเป็นความคืบหน้าอีกขั้นของโครงการอวกาศอันทะเยอทะยานของอินเดีย ซึ่งเคยส่งยานสำรวจขึ้นไปบนดวงจันทร์เมื่อ 3 ปีก่อน และวาดภาพภารกิจมนุษย์อวกาศคนแรกในปี 2016

“ยานอวกาศของเราจะเดินทางไปยังดาวอังคาร และรวบรวมข้อมูลทางวิทยาศาสตร์สำคัญๆ” ซิงห์กล่าวสุนทรพจน์ในงานวันประกาศอิสรภาพประจำปี โดยป่าวประกาศว่าแผนการนี้จะเป็นความก้าวหน้าครั้งใหญ่ด้านวิทยาศาสตร์ และเทคโนโลยีของแดนโรตี

เมื่อต้นเดือนที่ผ่านมา สำนักข่าวเพรส ทรัสต์ ออฟ อินเดียรายงานว่า องค์การวิจัยอวกาศอินเดีย (ไอเอสอาร์โอ) น่าจะส่งยานอวกาศไร้คนควบคุมขึ้นสู่วงโคจรอย่างเร็วที่สุดในเดือนพฤศจิกายน ปี 2013

ตามคำบอกเล่าของเจ้าหน้าที่ไอเอสอาร์โอรายหนึ่งระบุว่า ค่าใช้จ่ายในภารกิจดาวอังคารนี้อยู่ที่ประมาณ 4,000-5,000 ล้านรูปี หรือ 70-90 ล้านดอลลาร์

ขณะที่ สหรัฐฯ รัสเซีย ยุโรป ญี่ปุ่น และจีนต่างส่งยานอวกาศขึ้นสำรวจดาวอังคารกันมาก่อนแล้วทั้งสิ้น โดยหุ่นยนต์คิวริออสซิตีของสหรัฐฯ เพิ่งลงแตะพื้นผิว “เรด แพลเนต” ในสัปดาห์ที่ผ่านมา เพื่อเบิกทางสู่ภารกิจของมนุษย์อวกาศในอนาคต

โครงการสำรวจดาวอังคารของอินเดียนี้เกิดขึ้นในขณะที่รัฐบาลถูกกดดันจากปัญหาต่างๆ เช่น การขาดแคลนพลังงาน และระบบขนส่งภายในประเทศที่ย่ำแย่ หลังเกิดไฟดับในหลายส่วนทั่วประเทศ 2 วันติดต่อกันเมื่อต้นเดือนที่ผ่านมา


ผู้สื่อข่าวซีอาร์ไอรายงานว่า นายจิ่ง ไห่เผิง นายหลิว ว่าง และนางหลิว หยาง นักบินอวกาศประจำยานอวกาศ "เสินโจว 9" ร่วมเปิด "นิทรรศการการเชื่อมต่อกันในอวกาศพร้อมมนุษย์ครั้งแรกของจีน" ที่หอวิทยาศาสตร์ฮ่องกง เมื่อเช้าวันที่ 12 สิงหาคมนี้

นิทรรศการดังกล่าวจะเปิดให้ประชาชนเข้าชมฟรีต่อเนื่องกันเป็นเวลา 15 วัน โดยมีการจัดแสดงสิ่งของอันล้ำค่า 16 ชุด ภาพถ่ายที่เกี่ยวกับยานอวกาศ "เสินโจว 9" กว่า 100 ภาพ ภาพทั้งตัวของนักบินอวกาศ 3 คนในระบบ 3 มิติ ตลอดจนบันทึกเกี่ยวกับนักบินอวกาศทำการทดลองหลายรายการในสภาพไร้น้ำหนัก ทั้งนี้ผู้ชมจะสามารถเข้าใจปฏิบัติการการบินอวกาศของ "เสินโจว 9" และเรื่องราวต่างๆ ของนักบินอวกาศ 3 คนได้เพิ่มขึ้นอีกขั้น

ในการนี้ นายจิ่ง ไห่เผิง นายหลิว ว่าง และนางหลิว หยาง ได้ร่วมลงนามไว้เป็นที่ระลึกบนกระดานฉากงานนิทรรศการ และร่วมตัดริบบิ้นกับแขกผู้มีเกียรติที่เข้าร่วมพิธี






26 ส.ค. 2555 สำนักข่าวต่างประเทศรายงานจากกรุงวอชิงตัน ประเทศสหรัฐอเมริกาว่า “นีล อาร์มสตรอง” นักบินอวกาศคนแรกของสหรัฐ ซึ่งเดินทางไปเหยียบดวงจันทร์มาแล้ว เสียชีวิตเมื่อวันเสาร์ที่ผ่านมา ขณะมีอายุได้ 82 ปี ด้วยอาการติดเชื้อขณะเข้ารับการผ่าตัดโรคหลอดเลือดหัวใจ

รายงานข่าวระบุว่า “นีล อาร์มสตรอง” เคยเข้ารับการผ่าตัดขยายหลอดเลือดหัวใจเมื่อช่วงต้นเดือนที่ผ่านมา หลังแพทย์พบอาการอุดตันที่หลอดเลือดแดงใหญ่ที่หัวใจ ขณะที่ครอบครัวของ “นีล อาร์มสตรอง” ออกแถลงการณ์ระบุว่า เขาเสียชีวิตระหว่างการผ่าตัดขยายหลอดเลือดหัวใจ และมีอาการติดเชื้อ แต่ไม่ได้ระบุว่าเสียชีวิตที่ไหน แต่เขาก็เป็นเสมือนกับวีรบุรุษของชาวอเมริกันผู้ถูกละเลย เพราะได้ทำหน้าที่อย่างเต็มภาคภูมิให้กับประเทศชาติในฐานะนักบินขับไล่แห่งกองทัพเรือสหรัฐ นักบินทดสอบ และ นักบินอวกาศ

โดยเฉพาะอย่างยิ่งการสร้างประวัติศาสตร์ในฐานะนักบินอวกาศคนแรกของสหรัฐ ซึ่งเดินทางไปกับยานอวกาศ “อพอลโล 11” แล้วร่อนลงจอดบนดวงจันทร์ พร้อมกับลงไปเหยียบดวงจันทร์เป็นคนแรก เมื่อวันที่ 20 ก.ค.2512 พร้อมกับเพื่อนนักบินอวกาศอีกคน “บัซ อัลดริน” ท่ามกลางผู้ชม 450 ล้านคนที่ได้ชมการถ่ายทอดสดทางโทรทัศน์ไปทั่วโลก ซึ่งคำพูดแรกของเขาคือ นี่คือก้าวแรกของผู้ชายคนหนึ่ง แต่จะเป็นก้าวแรกของมนุษยชาติ

“นีล อาร์มสตรอง” เกิดเมื่อวันที่ 5 ส.ค.2473 ที่เมืองวาปาโคเนตา รัฐโอไฮโอ ชื่นชอบเรื่องการบินมาตั้งแต่เด็ก เรียนขับเครื่องบินครั้งแรกเมื่ออายุ 15 ปี พออายุ 16 ปีก็ได้ใบอนุญาตนักบิน เคยเป็นนักบินในกองทัพเรือสหรัฐ ปฏิบัติภารกิจ 78 ครั้งในสงครามเกาหลี

ปี 2498 เป็นนักบินทดสอบอยู่ที่ฐานทัพอากาศเอ็ดเวิร์ด รัฐแคลิฟอร์เนีย จากนั้นอีก 7 ปีต่อมา ได้รับเลือกจาก องค์การบริหารการบินและอวกาศแห่งชาติของสหรัฐ หรือนาซา ให้มาเป็นนักบินอวกาศที่เมืองฮุสตัน รัฐเท็กซัส และ เกษียณอายุจากนาซาในปี 2514 ด้านชีวิตส่วนตัว แต่งงานกับ แคโรล ไนท์ เมื่อปี 2542 แต่มีบุตรชาย 2 คน จากการสมรสก่อนหน้านี้

ต่อมาประธานาธิบดีบารัค โอบามา แห่งสหรัฐ กล่าวชื่นชม นักบินอวกาศอเมริกันผู้ล่วงลับ “นีล อาร์มสตรอง” ว่าเป็นหนึ่งในวีรบุรุษชาวอเมริกันผู้ยิ่งใหญ่ตลอดกาล ในฐานะผู้เป็นแรงบันดาลใจให้คนรุ่นหลังได้ดำเนินรอยตามในการมุ่งมั่นสู่ดวงดาว


แถลงการณ์ของประธานาธิบดีบารัค โอบามา ระบุว่า เมื่อ “นีล อาร์มสตรอง” และลูกทีมนักบินอวกาศสหรัฐ เดินทางไปกับยานอวกาศ อพอลโล 11 ในปี 2512 พวกเขาได้นำแรงบันดาลใจของชาวอเมริกันไปด้วย และ ได้แสดงให้ทั่วโลกเห็นว่า จิตวิญญาณของชาวอเมริกันอยู่เหนือจินตนาการว่า อะไรก็สามารถเกิดขึ้นได้ และ เมื่อ “นีล อาร์มสตรอง” ก้าวเท้าลงไปเหยียบพื้นผิวดวงจันทร์เป็นครั้งแรก เขาก็นำความสำเร็จของมนุษยชาติให้เป็นที่ประจักษ์และไม่เคยลืมเลือน

“นีล อาร์มสตรอง” และเพื่อนนักบินอวกาศ “เอ็ดวิน บัซ อัลดริน” เหยียบดวงจันทร์เมื่อวันที่ 20 ก.ค. 2512 โดยมีผู้คนทั่วโลก 500 ล้านคนชมการถ่ายทอดสดทางโทรทัศน์ ขณะประธานาธิบดีโอบามาเพิ่งจะมีอายุได้เพียง 8 ปี ได้กล่าวยกย่องเขาว่า “นีล อาร์มสตรอง” เป็นหนึ่งในวีรบุรุษของชาวอเมริกันผู้ยิ่งใหญ่ แต่ไม่ใช่เฉพาะยุคของเขาเท่านั้น แต่ตลอดกาล จิตวิญญาณของ “นีล อาร์มสตรอง” ในการค้นหาสิ่งมีชีวิตกับการสำรวจในสิ่งที่พวกเราไม่รู้ แต่ก็ยืนยันได้ว่า เราสามารถไปได้ไกลสูงขึ้นและไกลกว่าในอวกาศ ซึ่งตำนานนี้จะยังคงอยู่ต่อไปและจุดประกายให้กับเราได้รู้ถึงความยิ่งใหญ่ของก้าวเล็กๆที่เหยียบลงบนดวงจันทร์

ขณะเดียวกัน นายมิตต์ รอมนีย์ คู่แข่งของประธานาธิบดีโอบามาในการเลือกตั้งประธานาธิบดีสหรัฐช่วงปลายปีนี้ ก็ได้กล่าวยกย่อง “นีล อาร์มสตรอง” เช่นกันว่า เขาได้ก้าวเข้าไปอยู่ในหอแห่งเกียรติยศของชาวอเมริกันแล้ว

กล้องโทรทรรศน์

กล้องโทรทรรศน์ คืออุปกรณ์ที่ใช้ขยายวัตถุท้องฟ้าโดยอาศัยหลักการรวมแสง เพื่อให้สามารถมองเห็นวัตถุท้องฟ้าที่ไม่สามารถมองเห็นได้ด้วยตาเปล่า หรือทำให้มองเห็นได้ชัดขึ้น และมีขนาดใหญ่ขึ้น กล้องโทรทรรศน์ได้ถูกคิดค้นขึ้นครั้งแรกเมื่อปี ค.ศ. 1608 โดยฮานส์ ช่างทำแว่นคนหนึ่งซึ่งต่อมาค้นพบว่าหากนำเลนส์มาวางเรียงกับให้ได้ระยะที่ถูกต้องเลนส์สามารถขยายภาพที่อยู่ไกลๆได้ใกล้ขึ้น และ 1 ปีต่อมา กาลิเลโอ กาลิเลอิ ก็ได้ นำมาสำรวจท้องฟ้าเป็นครั้งแรกซึ่งในตอนนั้นเป็นกล้องหักเหแสงที่มีกำลังขยายไม่ถึง 30 เท่า เท่านั้นแต่ก็ทำให้เห็นรายละเอียดต่างๆมากมายของดวงดาวต่างๆที่ยังไม่เคยเห็นมาก่อนทำให้เป็นจุดเริ่มต้นของการเริ่มมาสำรวจท้องฟ้าโดยใช้กล้องโทรทรรศน์ในที่สุด


กล้องโทรทรรศน์ชนิดหักเหแสง
กล้องโทรทรรศน์ชนิดหักเหแสงเป็นกล้องที่ถูกสร้างขึ้นเป็นครั้งแรกโดยฮานส์ ช่างทำแว่นคนหนึ่ง ซึ่งต่อมาค้นพบว่าหากนำเลนส์มาวางเรียงกันให้ได้ระยะที่ถูกต้องเลนส์สามารถขยายภาพที่อยู่ไกลๆได้ใกล้ขึ้น และ 1 ปีต่อมา กาลิเลโอ กาลิเลอี ก็ได้ นำมาสำรวจท้องฟ้าเป็นครั้งแรกโดยตัวกล้องจะมีเลนส์ 2 ตัวขึ้นไปคือ เลนส์วัตถุ และเลนส์ตา โดยเลนส์วัตถุจะทำหน้าที่รับภาพจากวัตถุ แล้วหักเหแสงไปยังเลนส์ใกล้ตา ซึ่งเลนส์ใกล้ตาจะทำหน้าที่ขยายภาพจากเลนส์วัตถุอีกทีหนึ่ง โดยลักษณะการวางเลนส์จะใช้เลนส์วัตถุที่มี ความยาวโฟกัส ยาว และเลนส์ใกล้ตาที่มีความยาวโฟกัสสั้น โดยในการวางเลนส์ จะวางเลนส์วัตถุ (ความยาวโฟกัสยาว) ไว้ด้านหน้า และเลนส์ใกล้ตา (ความยาวโฟกัสสั้น) ไว้ด้านหลัง โดยระยะห่างของเลนส์ 2 ตัวนี้คือ ความยาวโฟกัสเลนส์วัตถุ + ความยาวโฟกัสเลนส์ตา เป็นต้น

ตัวอย่างภาพดวงจันทร์ที่ได้จากกล้องโทรทรรศน์

สำหรับกล้องโทรทรรศน์หักเหแสงของกาลิเลโอนั้น เลนส์วัตถุจะเป็นเลนส์นูน และเลนส์ตาจะเป็นจากเลนส์เว้า ซึ่งข้อดีของการใช้ระบบเลนส์แบบนี้คือภาพที่ได้จะเป็นภาพหัวตั้งโดยไม่ต้องใช้อุปกรณ์อื่นมาช่วย แต่ข้อเสียของการใช้เลนส์เว้าเป็นเลนส์ตาคือระบบกล้องจะมีมุมมองภาพที่แคบมาก ต่อมา โยฮันเนส เคปเลอร์ได้ใช้เลนส์นูนเป็นเลนส์ตาของกล้องโทรทรรศน์แทน ซึ่งทำให้ระบบกล้องโทรทรรศน์ให้ภาพกลับหัว และมีมุมมองภาพกว้างขึ้น ระบบเลนส์แบบนี้ได้ถูกพัฒนาอย่างต่อเนื่อง และใช้งานมาจนถึงปัจจุบัน

ข้อดีของกล้องโทรทรรศน์ชนิดนี้คือเป็นกล้องที่สร้างได้ง่ายและมีราคาเริ่มต้นที่ถูก และเมื่อมีขนาดของหน้ากล้องหรือขนาดของเลนส์วัตถุเท่ากันกล้องชนิดนี้เป็นกล้องชนิดที่สามารถให้แสงผ่านเข้าเลนส์ได้มากที่สุดเพราะไม่มีอะไรมาบังหน้ากล้องอยู่ จึงทำให้แสงผ่านเข้ากล้องได้มากกว่า 99 เปอร์เซ็นต์ทีเดียว อีกทั้งยังเก็บรักษาได้ง่ายเพราะเนื่องจากมีเลนส์ปิดหัวปิดท้ายกล้อง ทำให้ความชื้นหรือฝุ่นไม่สามารถเข้าไปในกล้องได้โดยง่าย จึงเหมาะอย่างยิ่งสำหรับมือสมัครเล่นทั่วไป แต่กล้องชนิดนี้หากมีหน้ากล้องที่ใหญ่ขึ้นจะทำให้มีราคาแพงขึ้นจากกล้องชนิดอื่นมาก และสามารถผลิตได้ขนาดหน้ากล้องเล็ก และ เลนส์ที่มีคุณภาพไม่ดีมักจะมีความคลาดสีของเลนส์ เพราะดัชนีความหักเหของแสงไม่เท่ากันทำให้แสงสีต่าง ๆ มักมีจุดโฟกัสไม่เท่ากันและเกิดรุ้งบริเวณขอบภาพในที่สุด วิธีการแก้ปัญหาในอดีตได้พยายามแก้ปัญหามานานแล้ว โดยการเพิ่มความยาวโฟกัสเลนส์วัตถุจนทำให้มีความคลาดสีน้อยลงแต่ยุ่งยากมาก และไม่สะดวกเป็นอย่างยิ่ง

ความคลาดสีของกล้องโทรทรรศน์หักเหแสง
หากว่าเราใช้ปริซึมมาส่องกับแสงแดดจะพบว่า ปริซึมจะแตกแสงออก 7 สีด้วยกันเพราะปริซึมจะหักเหแสงเหล่านั้น และถ้าสังเกตให้ดีเข้าไปอีกจะเห็นว่าสีที่หักเหมานั้นแต่ละสีจะยาวออกมาจากแท่งแก้วปริซึมไม่เท่ากันและเราจะเรียกปรากฏการณ์เหล่านี้ว่าดัชนีความหักเหของสีไม่เท่ากันและถ้าหากมาใช้กับเลนส์เราจะเรียกว่าความคลาดสีหรือ ความคลาดรงค์ นั่นเอง

ความคลาดสีจะพบได้กับเลนส์ที่มีคุณภาพต่ำโดยเกิดจากการที่สีของแสงต่างมีดัชนีความหักเหของไม่เท่ากันทำให้สีแต่ละสีไม่สามารถมารวมกันที่จุดรวมภาพจัดเดียวกันได้และทำให้เกิดรุ้งที่ขอบภาพ และในที่สุดภาพที่ได้มีแสงสีไม่ครบในภาพ และแสงที่หายไปจะเกินออกตรงขอบภาพ

ในอดีตได้มีการพยายามแก้ความคลาดสีด้วยการเพิ่มความยาวโฟกัสของเลนส์วัตถุขึ้นแต่จะทำให้กล้องยาวมากหลายสิบเมตรทำให้การที่จะขยายกล้องหันหาดาวที่ต้องการศึกษาเป็นไปด้วยความยุ่งยากและคุณภาพที่ได้ก็ไม่ดีเท่าที่ควร
แสดงถึงความคลาดสีที่เกิดขึ้น

ปัจจุบัน เราแก้ปัญหาความคลาดสีของกล้องโทรทรรศน์หักเหแสงได้โดยการใช้เลนส์เว้า และเลนส์นูน ที่มีดัชนีหักเหแสงแตกต่างกันมาประกอบ เป็นเลนส์ 2 ชิ้นที่สามารถแก้ให้แสงสีเขียวและแดงมีจุดโฟกัสใกล้กันมากขึ้นได้ เรียกว่าเลนส์ Doublet Achromatic และมีการใช้เลนส์ถึง 3 ชิ้น (Triplet Apochromatic) หรือมากกว่าได้ และอาจมีการใช้ชิ้นเลนส์พิเศษเช่นเลนส์ ED (Extra-Low Dispersion) หรือเลนส์ Fluorite เพื่อให้ภาพที่มีความคลาดสีน้อยที่สุด แต่การใช้เลนส์จำนวนมาก หรือชิ้นเลนส์พิเศษเหล่านี้ ทำให้กล้องโทรทรรศน์มีราคาสูงขึ้นมากเช่นกัน
[แก้]กล้องโทรทรรศน์ชนิดสะท้อนแสง

กล้องโทรทรรศน์ชนิดสะท้อนแสง
สร้างได้สำเร็จครั้งแรกในปี ค.ศ. 1668 โดย ไอแซค นิวตันซึ่งในตอนนั้นถือเป็นเรื่องที่ใหม่มากสำหรับวงการดาราศาสตร์ในสมัยนั้น หลักการทำงานของกล้องสะท้อนแสงจะใช้กระจกเว้าสะท้อนแสงแทนที่จะใช้เลนส์ในการหักเหแสง โดยยังมีหลักการที่คล้ายคลึงอยู่บ้างคือ จะใช้กระจกเว้าที่มีความยาวโฟกัสยาว (เหมือนเลนส์วัตถุของกล้องหักเหแสง) สะท้อนแสงจากวัตถุเข้าที่กระจกรองซึ่งจะสะท้อนแสงของวัตถุเข้าที่เลนส์ตาและเข้าตาของผู้ใช้ในที่สุด โดยกล้องชนิดนี้มีข้อดีคือกล้องสามารถที่จะผลิตให้มีขนาดหน้ากล้องใหญ่มาก ๆ ได้ซึ่งจะทำให้สำรวจวัตถุที่จางบนท้องฟ้าได้ดีขึ้น และเมื่อเทียบกับกล้องหักเหแสงหากหน้ากล้องเท่ากันแล้วกล้องแบบสะท้อนแสงจะมีราคาถูกกว่ามาก แต่ทั้งนี้ก็มีราคาเริ่มต้นที่ไม่ถูกนักเหมือนกับกล้องหักเหแสง และกล้องชนิดนี้ยังสามารถใช้สำรวจช่วงคลื่นได้หลากหลายกว่ากล้องหักเหแสง เพราะช่วงคลื่นเหล่านั้นจะไม่ถูกดูดซับโดยแก้วของเลนส์อีกทั้งยังไม่พบปัญหาเรื่องความคลาดสีของกล้องหักเหแสงออกไปจนหมดเพราะกล้องใช้หลักการการสะท้อนจะไม่มีปัญหาเรื่องความคลาดสีเข้ามาเกี่ยวข้อง

แต่กล้องชนิดนี้มีข้อเสียคือตรงหน้ากล้องจะมีกระจกรองบังหน้ากล้องอยู่ (เพื่อสะท้อนแสงจากกระจกเว้าเข้าสู่เลนส์ตา) จึงทำให้แสงผ่านเข้าได้น้อยลงและทำให้ภาพมืดลงด้วยด้วยสาเหตุนี่กล้องชนิดสะท้อนแสงจะต้องมีขนาดหน้ากล้องใหญ่เพื่อชดเชยข้อเสียดังกล่าวและจะทำให้ราคาแพงขึ้นด้วยแต่ถึงอย่างไรก็ดีผู้ศึกษามักจะนิยมใช้กล้องสะท้อนแสงมากกว่ากล้องหักเหแสงเพราะมีราคาที่ถูกกว่าเมื่อหน้ากล้องเท่ากันและสามารถเลือกซื้อกล้องที่มีหน้ากล้องใหญ่ ๆ ได้
ระบบฐานตั้งกล้องดูดาว
ในการใช้กล้องดูดาวอุปกรณ์ที่สำคัญไม่แพ้กันเลยคือขาตั้งกล้องซึ่งจะทำให้ที่ตั้งกล้องไว้และหันกล้องไปในทิศทางที่ถูกต้องและล็อกอยู่ที่วัตถุนั้นเพื่อให้ผู้ศึกษาสามารถที่จะศึกษาวัตถุนั้นได้อย่างง่ายดาย แต่ในการสำรวจท้องฟ้านั้นขาตั้งกล้องกล้องจะต้องมีความแม่นยำและเที่ยงตรง รวมทั้งมั่นคงเป็นพิเศษทั้งนี้เพราะการสำรวจดวงดาวนั้นมีมุมในการหันขาตั้งกล้องที่สั้นมากๆอีกทั้งหากกล้องมีกำลังขยายที่สูงเข้าไปอีกการสั่นเพียงเล็กน้อยของขาตั้งกล้องจะทำให้ภาพนั้นสั่นไหวมากและไม่สามารถที่จะสำรวจท้องฟ้าได้เลยยังไม่รวมถึงการที่ดาวจะเคลื่อนที่ไปเรื่อยๆบนท้องฟ้าตามการหมุนของโลก ซึ่งหากสังเกตด้วยตาเปล่าก็จะไม่สามารถสังเกตเห็นได้แต่ในกำลังขยายสูงๆจะเห็นได้ว่าดาว กำลังเคลื่อนที่อยู่ซึ่งการเคลื่อนที่นี้จะทำให้ดาวหลุดออกนอกกล้องอย่างรวดเร็วและไม่สามารถสำรวจวัตถุนั้นได้จึงต้องใช้ขาตั้งกล้องที่มีความสามารถต่างๆเข้ามาทดแทนปัญหานี้ต่อไป

  1. ฐานตั้งกล้องชนิดมุมเงย-มุมทิศ (Alt-azimuth Mount) ฐานตั้งกล้องชนิดนี้จะคุ้นเคยกันดีเพราะเป็นขาตั้งกล้องชนิดเดียวกับขาตั้งกล้องถ่ายภาพโดยทั่วไป ฐานตั้งกล้องชนิดนี้มีแกนหมุน 2 แกน คือแกนหมุนในแนวราบเพื่อปรับมุมทิศ และแกนหมุนในแนวดิ่งเพื่อปรับมุมเงย ข้อดีของขาตั้งชนิดนี้คือใช้งานง่ายและมีราคาถูก ส่วนข้อเสียสำคัญคือ ขาตั้งกล้องชนิดนี้ ต้องใช้การหมุนมอเตอร์ทั้ง 2 แกน เพื่อติดตามการเคลื่อนที่ขึ้นตกของวัตถุท้องฟ้า ทำให้ไม่สามารถติดตามวัตถุท้องฟ้าได้นิ่ง พอที่จะใช้ในงานถ่ายภาพทางดาราศาตร์ได้ และทำให้เกิดปัญหาการหมุนของภาพ (Field Rotation) เมื่อใช้ถ่ายภาพเป็นระยะเวลานานอีกด้วย
  2. ฐานตั้งกล้องชนิดอิเควทอเรียล (Equatorial Mount) ฐานตั้งกล้องชนิดนี้ออกแบบมาสำหรับการใช้งานทางดาราศาสตร์โดยเฉพาะ ประกอบไปด้วยแกนหมุน 2 แกนที่มีแกนหนึ่งชี้ไปที่ขั้วฟ้าเหนือ (ใกล้กับดาวเหนือ) เรียกว่า Polar Axis และอีกแกนหนึ่งที่หมุนตั้งฉากกัน เรียกว่าแกนเดคลิเนชัน (Declination Axis) ฐานตั้งกล้องชนิดนี้มีการใช้งานอ้างอิงกับระบบพิกัดศูนย์สูตรฟ้า ซึ่งแกน Polar นั้น ทำหน้าที่เปลี่ยนพิกัด Right Ascension และ แกนเดคลิเนชั่นทำหน้าที่เปลี่ยนพิกัด Declination เพื่อเล็งไปที่วัตถุท้องฟ้าที่ต้องการ และเมื่อเวลาผ่านไป ดาวจะเคลื่อนที่รอบขั้วฟ้าเหนือ ทำให้เราสามารถติดตามดาวด้วยการหมุนแกน Polar เพียงแกนเดียวได้ ทำให้ฐานตั้งชนิดนี้สามารถติดตามวัตถุท้องฟ้าได้แม่นยำกว่า และเหมาะกับการใช้งานทางดาราศาสตร์มากกว่าแบบแรก ในการใช้งานจริง เราจะติดมอเตอร์เพื่อขับแกน Polar เพื่อให้กล้องตามดาวได้ตลอดเวลา
  3. ฐานตั้งกล้องคอมพิวเตอร์ (Computerized Mount) เป็นฐานตั้งกล้องที่มีการฝังระบบคอมพิวเตอร์ลงไป ทำให้สามารถชี้ไปที่วัตถุท้องฟ้าที่กำหนดได้อัตโนมัติ โดยการระบุวัตถุที่ต้องการลงไปบนระบบควบคุม ซึ่งอาจเป็นรีโมต หรือโปรแกรมคอมพิวเตอร์ ฐานตั้งกล้องจะรับพิกัดของวัตถุนั้นจากฐานข้อมูล และหมุนกล้องไปที่วัตถุนั้น

ระบบสุริยะเกิดจากกลุ่มฝุ่นและก๊าซในอวกาศซึ่งเรียกว่า “โซลาร์เนบิวลา” (Solar Nebula) รวมตัวกันเมื่อประมาณ 4,600 ล้านปีมาแล้ว (นักวิทยาศาสตร์คำนวณจากอัตราการหลอมรวมไฮโดรเจนเป็นฮีเลียมภายในดวงอาทิตย์) เมื่อสสารมากขึ้น แรงโน้มถ่วงระหว่างมวลสารมากขึ้นตามไปด้วย กลุ่มฝุ่นก๊าซยุบตัวหมุนเป็นรูปจานตามหลักอนุรักษ์โมเมนตัมเชิงมุม ดังภาพที่ 1 แรงโน้มถ่วงที่ใจกลางสร้างแรงกดดันมากทำให้ก๊าซมีอุณหภูมิสูงพอที่จุดปฏิกิริยานิวเคลียร์ฟิวชัน หลอมรวมอะตอมของไฮโดรเจนให้เป็นฮีเลียม ดวงอาทิตย์จึงถือกำเนิดเป็นดาวฤกษ์



ภาพที่ 1 กำเนิดระบบสุริยะ



วัสดุชั้นรอบนอกของดวงอาทิตย์มีอุณหภูมิต่ำกว่า ยังโคจรไปตามโมเมนตัมที่มีอยู่เดิม รอบดวงอาทิตย์เป็นชั้นๆ มวลสารของแต่ละชั้นพยายามรวมตัวกันด้วยแรงโน้มถ่วง ด้วยเหตุนี้ดาวเคราะห์จึงถือกำเนิดขึ้นเป็นรูปทรงกลม เนื่องจากมวลสารพุ่งใส่กันจากทุกทิศทาง
อิทธิพลจากแรงโน้มถ่วงทำให้วัสดุที่อยู่รอบๆ พยายามพุ่งเข้าหาดาวเคราะห์ ถ้าทิศทางของการเคลื่อนที่มีมุมลึกพอ ก็จะพุ่งชนดาวเคราะห์ทำให้ดาวเคราะห์นั้นมีขนาดใหญ่ขึ้น เนื่องจากมวลรวมกัน แต่ถ้ามุมของการพุ่งชนตื้นเกินไป ก็จะทำให้แฉลบเข้าสู่วงโคจร และเกิดการรวมตัวต่างหากกลายเป็นดวงจันทร์บริวาร ดังเราจะเห็นได้ว่า ดาวเคราะห์ขนาดใหญ่ เช่น ดาวพฤหัสบดี จะมีดวงจันทร์บริวารหลายดวงและมีวงโคจรหลายชั้น เนื่องจากมีมวลสารมากและแรงโน้มถ่วงมหาศาล ต่างกับดาวพุธซึ่งมี
ขนาดเล็กมีแรงโน้มถ่วงน้อย ไม่มีดวงจันทร์บริวารเลย วัสดุที่อยู่โดยรอบจะพุ่งเข้าหาดวงอาทิตย์ เพราะ
มีแรงโน้มถ่วงมากกว่าเยอะ

องค์ประกอบของระบบสุริยะ

ดวงอาทิตย์ (The Sun) เป็นดาวฤกษ์ที่อยู่ตรงตำแหน่งศูนย์กลางของระบบสุริยะและเป็นศูนย์กลาง
ของแรงโน้มถ่วง ทำให้ดาวเคราะห์และบริวารทั้งหลายโคจรล้อมรอบ




ภาพที่ 2 ระบบสุริยะ
คลิก เพื่อดูภาพเคลื่อนไหว


ดาวเคราะห์ชั้นใน (Inner Planets) เป็นดาวเคราะห์ขนาดเล็ก มีความหนาแน่นสูงและพื้นผิวเป็น
ของแข็ง ซึ่งส่วนใหญ่เป็นธาตุหนัก มีบรรยากาศอยู่เบาบาง ทั้งนี้เนื่องจากอิทธิพลจากความร้อนของ
ดวงอาทิตย์และลมสุริยะ ทำให้ธาตุเบาเสียประจุ ไม่สามารถดำรงสถานะอยู่ได้ ดาวเคราะห์ชั้นใน
บางครั้งเรียกว่า ดาวเคราะห์พื้นแข็ง “Terrestrial Planets"เนื่องจากมีพื้นผิวเป็นของแข็งคล้ายคลึง
กับโลก ดาวเคราะห์ชั้นในมี 4 ดวง คือ ดาวพุธ ดาวศุกร์ โลก
และดาวอังคาร

ดาวเคราะห์ชั้นนอก (Outer Planets) เป็นดาวเคราะห์ขนาดใหญ่ แต่มีความหนาแน่นต่ำ เกิดจาก
การสะสมตัวของธาตุเบาอย่างช้าๆ ทำนองเดียวกับการก่อตัวของก้อนหิมะ เนื่องจากได้รับอิทธิพลของ
ความร้อนและลมสุริยะจากดวงอาทิตย์เพียงเล็กน้อย ดาวเคราะห์พวกนี้จึงมีแก่นขนาดเล็กห่อหุ้มด้วย
ก๊าซจำนวนมหาสาร บางครั้งเราเรียกดาวเคราะห์ประเภทนี้ว่า ดาวเคราะห์ก๊าซยักษ์ (Gas Giants) หรือ Jovian Planets ซึ่งหมายถึงดาวเคราะห์ที่มีคุณสมบัติคล้ายดาวพฤหัสบดี ดาวเคราะห์ชั้นนอกมี 4 ดวง
คือ ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน
คลิก เพื่อดูภาพเคลื่อนไหว

ดวงจันทร์บริวาร (Satellites) โลกมิใช่ดาวเคราะห์เพียงดวงเดียวที่มีดวงจันทร์บริวาร โลกมีบริวาร
ชื่อว่า “ดวงจันทร์” (The Moon) ขณะที่ดาวเคราะห์ดวงอื่นก็มีบริวารเช่นกัน เช่น ดาวพฤหัสบดีมี
ดวงจันทร์ขนาดใหญ่ 4 ดวงชื่อ ไอโอ (Io), ยูโรปา (Europa), กันนีมีด (ganymede) และคัลลิสโต (Callisto) ดาวเคราะห์และดวงจันทร์ถือกำเนิดขึ้นพร้อมๆ กัน เพียงแต่ดวงจันทร์มิได้รวมตัวกับ
ดาวเคราะห์โดยตรง แต่ก่อตัวขึ้นภายในวงโคจรของดาวเคราะห์ เราจะสังเกตได้ว่า หากมองจากด้านบน
ของระบบสุริยะ จะเห็นได้ว่า ทั้งดวงอาทิตย์ ดาวเคราะห์และดวงจันทร์ส่วนใหญ่ จะหมุนรอบตัวเองในทิศทวนเข็มนาฬิกา และโคจรรอบดวงทิตย์ในทิศทวนเข็มนาฬิกาเช่นกันหากมองจากด้านข้างของ
ระบบสุริยะก็จะพบว่า ทั้งดวงอาทิตย์ ดาวเคราะห์ และดวงจันทร์บริวาร จะอยู่ในระนาบที่ใกล้เคียงกับ
สุริยะวิถีมาก ทั้งนี้ก็เนื่องมาจากระบบสุริยะทั้งระบบ ก็กำเนิดขึ้นพร้อมๆ กัน โดยการยุบและหมุนตัว
ของจานฝุ่น

ดาวเคราะห์แคระ (Dwarf Planets) เป็นนิยามใหม่ของสมาพันธ์ดาราศาสตร์สากล (International Astronomical Union) ที่กล่าวถึง วัตถุขนาดเล็กที่มีรูปร่างคล้ายทรงกลม แต่มีวงโคจรเป็นรูปรี ซ้อนทับกับดาวเคราะห์ดวงอื่น และไม่อยู่ในระนาบของสุริยะวิถี ซึ่งได้แก่ ซีรีส พัลลาส พลูโต และดาวที่เพิ่งค้นพบใหม่ เช่น อีริส เซ็ดนา วารูนา เป็นต้น (ดูภาพที่ 3 ประกอบ)


ภาพที่ 3 ขนาดของดาวเคราะห์แคระเปรียบเทียบกับโลก (ที่มา: NASA, JPL)

ดาวเคราะห์น้อย (Asteroids) เกิดจากวัสดุที่ไม่สามารถรวมตัวกันเป็นดาวเคราะห์ได้ เนื่องจากแรงรบกวนจากดาวเคราะห์ขนาดใหญ่ เช่น ดาวพฤหัสบดี และดาวเสาร์ ดังเราจะพบว่า ประชากรของดาวเคราะห์น้อยส่วนใหญ่อยู่ที่ “แถบดาวเคราะห์น้อย” (Asteroid belt) ซึ่งอยู่ระหว่างวงโคจรของดาวอังคารและดาวพฤหัสบดี ดาวเคราะห์แคระเช่น เซเรส ก็เคยจัดว่าเป็นดาวเคราะห์น้อยที่มีขนาดใหญ่ที่สุด (เส้นผ่านศูนย์กลาง 900 กิโลเมตร) ดาวเคราะห์น้อยส่วนใหญ่จะมีวงโคจรรอบดวงอาทิตย์เป็นรูปรีมาก และไม่อยู่ในระนาบสุริยะวิถี ขณะนี้มีการค้นพบดาวเคราะห์น้อยแล้วประมาณ 3 แสนดวง


ภาพที่ 4 แถบดาวเคราะห์น้อย (ที่มา: Pearson Prentice Hall, Inc)

ดาวหาง (Comets) เป็นวัตถุขนาดเล็กเช่นเดียวกับดาวเคราะห์น้อย แต่มีวงโคจรรอบดวงอาทิตย์เป็นวงยาวรีมาก มีองค์ประกอบส่วนใหญ่เป็นก๊าซในสถานะของแข็ง เมื่อดาวหางเคลื่อนที่เข้าหาดวงอาทิตย์ ความร้อนจะให้มวลของมันระเหิดกลายเป็นก๊าซ ลมสุริยะเป่าให้ก๊าซเล่านั้นพุ่งออกไปในทิศทางตรงข้ามกับดวงอาทิตย์ กลายเป็นหาง

วัตถุในแถบไคเปอร์ (Kuiper Belt Objects) เป็นวัตถุที่หนาวเย็นเช่นเดียวกับดาวหาง แต่มีวงโคจรอยู่ถัดจากดาวเนปจูนออกไป บางครั้งจึงเรียกว่า Trans Neptune Objects ทั้งนี้แถบคุยเปอร์จะอยู่ในระนาบของสุริยะวิถี โดยมีระยะห่างออกไปตั้งแต่ 40 – 500 AU (AU ย่อมาจาก Astronomical Unit หรือ หน่วยดาราศาสตร์ เท่ากับระยะทางระหว่างโลกถึงดวงอาทิตย์ หรือ 150 ล้านกิโลเมตร) ดาวพลูโตเองก็จัดว่าเป็นวัตถุในแถบคุยเปอร์ รวมทั้งดาวเคราะห์แคระซึ่งค้นพบใหม่ เช่น อีริส เซ็ดนา วารูนา เป็นต้น ปัจจุบันมีการค้นพบวัตถุในแถบไคเปอร์แล้วมากกว่า 35,000 ดวง


ภาพที่ 5 แถบไคเปอร์ และวงโคจรของดาวพลูโต (ที่มา: NASA, JPL)

เมฆออร์ท (Oort Cloud) เป็นสมมติฐานที่ตั้งขึ้นโดยนักดาราศาสตร์ชาวเนเธอร์แลนด์ชื่อ แจน ออร์ท (Jan Oort) ซึ่งเชื่อว่า ณ สุดขอบของระบบสุริยะ รัศมีประมาณ 50,000 AU จากดวงอาทิตย์ ระบบสุริยะ
ของเราห่อหุ้มด้วยวัสดุก๊าซแข็ง ซึ่งหากมีแรงโน้มถ่วงจากภายนอกมากระทบกระเทือน ก๊าซแข็งเหล่านี้ก็จะหลุดเข้าสู่วงโคจรรอบดวงอาทิตย์ กลายเป็นดาวหางวงโคจรคาบยาว (Long-period comets)


ภาพที่ 6 ตำแหน่งของแถบไคเปอร์และเมฆออร์ท (ที่มา: NASA, JPL)
ข้อมูลที่น่ารู้ ระบบสุริยะมีขนาดเส้นผ่านศูนย์กลาง 12,000 ล้านกิโลเมตร
99% ของเนื้อสารทั้งหมดของระบบสุริยะ รวมอยู่ที่ดวงอาทิตย์
ในปัจจุบันถือว่า ดาวเคราะห์มี 8 ดวง ดาวพลูโต ดาวเคราะห์น้อยขนาดใหญ่ เช่น ซีรีส จูโน พัลลาส เวสตา และวัตถุไคเปอร์ที่มีขนาดใหญ่ เช่น อีรีส เซดนา ถูกจัดประเภทใหม่ว่าเป็น ดาวเคราะห์แคระ
ดาวศุกร์มีอุณหภูมิพื้นผิวที่สูงสุดในระบบสุริยะ (ร้อนกว่าดาวพุธ) เนื่องจากมีภาวะเรือนกระจก
ดวงจันทร์บริวารขนาดใหญ่ที่โคจรรอบดาวเคราะห์ดวงอื่นๆ ที่ถูกค้นพบแล้ว มีจำนวนไม่น้อยกว่า 130 ดวง
นักดาราศาสตร์ค้นพบดาวเคราะห์น้อยจำนวนมากกว่า 300,000 ดวง ส่วนใหญ่อยู่ในแถบดาวเคราะห์น้อย ระหว่างวงโคจรของดาวอังคาร และดาวพฤหัสบดี นอกจากนั้นยังมีกลุ่มดาวเคราะห์น้อยโทรจัน ซึ่งอยู่ร่วมวงโคจรกับดาวพฤหัสบดี และยังมีดาวเคราะห์น้อยบางดวงโคจรเข้าใกล้โลกมากกว่าดวงจันทร์
ดาวเคราะห์น้อยบางดวงมีดวงจันทร์บริวารด้วย เช่น ดาวเคราะห์น้อยไอดา (Ida) ขนาด 28 x 13 กิโลเมตร มีดวงจันทร์แดคทิล (Dactyl)ขนาด 1 กม. โดยมีรัศมีวงโคจร 100 กิโลเมตร
ดาวพลูโตที่จัดว่าเป็นดาวเคราะห์แคระ มีดวงจันทร์บริวารที่ค้นพบแล้ว 3 ดวง



ดวงอาทิตย์ทรงกลมขนาดใหญ่นี้ เกิดขึ้นเมื่อราว 5 ล้านล้านปีที่ผ่านมา

เริ่มต้นก่อกำเนิดจากองค์ประกอบสำคัญ คือ ไฮโดรเจน 71% และฮีเลียม 27% ส่วนอีก 2% เป็นธาตุอื่นๆ

เช่น ออกซิเจน, คาร์บอน, ไนโตรเจน, ซิลิคอนและแมกนีเซียม เป็นต้น


ดวงอาทิตย์มีขนาดเส้นผ่าศูนย์กลางเท่ากับ 1.392 x 106 กิโลเมตร

ซึ่งมีขนาดใหญ่กว่าโลกของเราถึง 109 เท่า และมีปริมาตรเป็น 1.41 x 1018 ลูกบาศก์กิโลเมตร

ใหญ่กว่าโลกของเรามากมายหลายเท่าทีเดียว (1.3 ล้านเท่า)




ดวงอาทิตย์อยู่ห่างไกลจากโลกมาก ประมาณ 1.496 x 108 กิโลเมตร

เราทบทวนถึงความรู้เกี่ยวกับดวงอาทิตย์กันพอสังเขปแล้ว เพื่อให้มองเห็นภาพได้ชัดเจนยิ่งขึ้น

เราจะขออธิบายถึง "โครงสร้างของดวงอาทิตย์" ต่อไป




ดวงอาทิตย์เป็นดาวฤกษ์ที่อยู่ใกล้โลกของเรามากที่สุด มีองค์ประกอบส่วนใหญ่เป็นก๊าซไฮโดรเจน ที่ใจกลาง ของดวงอาทิตย์ มีอุณหภูมิและแรงดันสูงมาก จนทำให้ก๊าซไฮโดรเจนหลอมรวมกันเป็นก๊าซฮีเลียม และแผ่พลังงาน ออกมาอย่างมหาศาล เป็นความร้อนและแสงสว่าง เราเรียกปฏิกิริยานี้ว่า " ปฏิกิริยานิวเคลียร์ฟิวชัน " พลังงานความร้อน และแสงสว่างจากดวงอาทิตย์นี้เอง ที่เอื้อให้เกิดสิ่งมีฃีวิตบนโลกของเรา

โครงสร้างภายในของดวงอาทิตย์ ประกอบไปด้วย

1. แกนกลาง มีอุณหภูมิสูงกว่า 15 ล้านองศาเซลเซียส
2. โชนการแผ่รังสี พลังงานความร้อนถ่ายทอดออกสู่ส่วนนอกในรูปแบบคลื่น
3. โซนการพารังสี อยู่เหนือโซนการแผ่รังสีพลังงานความร้อนในโซนนี้ถูกถ่ายทอด ออกสู่ ส่วนนอก โดยการเคลื่อนที่ของก๊าซ




4. โฟโตสเฟียร์ เป็นพื้นผิวของดวงอาทิตย์ อยู่เหนือโซนการพารังสี เราสังเกตพื้นผิวส่วนนี้ได้ในช่วงคลื่นแสง มีอุณหภูมิประมาณ 5,500 องศาเซลเซียส

5. โครโมสเฟียร์ เป็นบริเวณที่อยู่เหนือขึ้นมาจากชั้นโฟโตสเฟียร์ มีอุณหภูมิสูงประมาณ10,000 องศาเซลเซียส

6. คอโรนา เป็นบรรยากาศชั้นนอกสุดของดวงอาทิตย์แผ่ออกไปในอวกาศหลายล้านกิโลเมตร มีอุณหภูมิสูงมากกว่า 1 ล้านองศาเซลเซียส




หากลองเอาโลกของเราไปวางไว้ข้างๆ ดวงอาทิตย์ เพียงไม่กี่วินาที มันก็จะระเหยเป็นไอเปลวไฮโดรเจน







ภาพการปะทุของดวงอาทิตย์ เมื่อวันที่ 21 พฤศจิกายน 2553

ภาพการปะทุของดวงอาทิตย์ เมื่อเดือนกันยายน

ดวงอาทิตย์เป็นส่วนสำคัญที่สุดของระบบสุริยะ เป็นผู้ดึงดูดให้ดาวเคราะห์ทั้งเก้าดวงอยู่ในตำแหน่งที่เป็นอยู่และดวงอาทิตย์ยังให้แสงและความร้อนกับดาวเคราะห์นั้นด้วย




เมื่อวันที่ 22 พฤศจิกายนที่ผ่านมา ยานสังเกตการณ์สุริยพลวัต (Solar Dynamics Observatory) ของนาซ่า ได้เปิดเผยภาพการปะทุของดวงอาทิตย์ภาพล่าสุด ที่เกิดขึ้นในช่วงค่ำของวันที่ 21 พฤศจิกายนที่ผ่านมาตามเวลาในประเทศไทย



โดยการปะทุของดวงอาทิตย์ในครั้งนี้ เกิดขึ้นบริเวณตะวันตกเฉียงเหนือของดวงอาทิตย์ แต่ไม่ได้สร้างผลกระทบต่อระบบสนามแม่เหล็กของโลกแต่อย่างใด เพราะโลกไม่ได้อยู่ในแนวการปะทุของดวงอาทิตย์ และการปะทุดังกล่าวก็ไม่ได้เป็นการปะทุครั้งใหญ่ เหมือนกับการปะทุที่เคยเกิดขึ้นเมื่อเดือนเมษายนที่ผ่านมา ซึ่งการปะทุในครั้งนั้นได้ถูกระบุว่าเป็นการปะทุครั้งใหญ่ที่สุดในรอบ 15 ปีเลยทีเดียว




ดวงอาทิตย์มีกลุ่มความร้อนพุ่งขึ้นและตกลงมา ซึ่งแต่ละลูกนั้นมีขนาดใหญ่เท่ากับรัฐเท็กซัส


และมีความยาวถึง 1,600 กิโลเมตร ที่ใจกลางของนิวเคลียร์ อุณหภูมิสูงเท่ากับ 30 ล้านองศาฟาเรนไฮท์
แต่โลกของเราอยู่ระยะห่างราว 150 ล้านกิโลเมตร ตั้งอยู่ในระยะพอเหมาะ
ขณะที่ดาวเคราะห์ดวงอื่นอาจจะเย็นจัดหรือร้อนจัดจนเกินไป หากว่าโลกของเรานั้นตั้งอยู่ใกล้ดวงอาทิตย์กว่านี้
มีผลทำให้น้ำในมหาสมุทรเหือดแห้งไป และหากไกลกว่านี้ โลกก็จะกลายเป็นเพียงดินแดนน้ำแข็งที่ไร้ร้างและไม่มีมนุษย์อาศัยอยู่ได้









ดวงอาทิตย์หล่อเลี้ยงทุกชีวิตบนโลกความอบอุ่นช่วยสร้างสภาพอากาศ ทำให้น้ำลอยขึ้นจากมหาสมุทร

แล้วเคลื่อนตัวไปเหนือทวีปต่างๆ



แดด ฝนและหิมะทำให้ผืนแผ่นดินเหมาะสมต่อการยังชีพ






แต่ดวงอาทิตย์ของเราไม่ได้มีแต่เพียงความอบอุ่น หากยังมีแสงสว่าง ปาฏิหาริย์ของพืชพรรณก็คือความสามารถในการใช้แสงอาทิตย์ช่วยในการเจริญเติบโต ด้วยวิธีสังเคราะห์แสง พืชจะเปลี่ยนน้ำและคาร์บอนไดออกไซด์ให้กลายเป็นคาร์โบไฮเดรต และปล่อยออกซิเจนออกมา ส่วนสัตว์นั้นจะเก็บเกี่ยวพลังงานจากแสงอาทิตย์ด้วยเช่นกัน

ในด้านความอบอุ่น ถ้าปราศจากความอบอุ่น สัตว์เช่นจระเข้ ก็จะไม่มีพลังงานในการย่อยอาหาร หรือโหนกบนหลังของอัลลิเกเตอร์ มีวิวัฒนาการขึ้นมาเพื่อดูดซับแสงอาทิตย์ พวกมันดูดซับความร้อนผ่านผิวหนัง และส่งผ่านไปยังกระแสเลือด เพื่ออาหารที่มันกินจะเน่าเปื่อยภายในกระเพาะของอัลลิเกเตอร์ พวกมันจึงจำเป็นต้องนอนอาบแดด




บนดวงอาทิตย์นั้น มีจุดกลมขนาดเล็กซึ่งเป็นบริเวณที่เย็นและเรียกว่า "จุดดับบนดวงอาทิตย์" มันเกิดขึ้นบนพื้นผิวของดวงอาทิตย์ที่ลุกโชน จุดบนดวงอาทิตย์นั้น เป็นที่ๆ สนามแม่เหล็กจะรุนแรง ในแต่ละวันสนามแม่เหล็กที่ออกมาจากจุดดับบนดวงอาทิตย์นั้น เหมือนกับน้ำพุที่พุ่งขึ้นมาตรงกลาง แรงและกระจายไปทั่ว สนามแม่เหล็กจะออกมาจากจุดดับบนดวงอาทิตย์เพียงหนึ่งจุดอาจจะที่ขั้วเหนือเหมือนกับแม่เหล็ก แล้วพุ่งลงไปที่จุดดับอีกจุดหนึ่งที่อยู่ขั้วใต้ภายในแม่เหล็กดวงอาทิตย์ขนาดใหญ่ พลาสมาบนดวงอาทิตย์ช่วยบอกถึงเส้นสนามแม่เหล็กระหว่างขั้วเหนือกับขั้วใต้

เมื่อดวงอาทิตย์มีการเปลี่ยนแปลง สนามแม่เหล็กก็จะทวีความซับซ้อนขึ้น นั่นคือสิ่งที่ทำให้เกิดจุดดับบนดวงอาทิตย์มากยิ่งขึ้น



ในระบบสุริยะมีการเปลี่ยนแปลงอยู่เสมอทุก 11 ปีหรือประมาณนั้นเมื่อปี 1985 พื้นที่สนามแม่เหล็กส่วนใหญ่เป็นสีเทาและดูเงียบสงบ แต่ในปี 1991 กลับกลายเป็นความโกลาหลทางแม่เหล็กครั้งใหญ่ จากนั้นทุกอย่างก็เริ่มสงบลง และพายุครั้งยิ่งใหญ่ในช่วงปี 2000 ก็กลับเริ่มขึ้นอีกครั้ง ช่วงเวลาที่กิจกรรมบนดวงอาทิตย์ทวีความรุนแรงถึงขีดสุด และทำให้เราเห็นถึงลักษณะของดวงอาทิตย์มากกว่าที่เคยเห็นในอดีต อีกทั้งมีแรงรบกวนส่งผ่านจากดวงอาทิตย์มาสู่โลกของเรา



จุดจบของดวงอาทิตย์นั้นเร็วมาก ภายในเวลา 3 พันล้านปี ทุกชีวิตบนโลกก็จะถูกแผดเผา ดวงอาทิตย์จะสูญเสียสมดุล และทุกอย่างก็จะเปลี่ยนไปมาระหว่างการหลอมละลายและแรงโน้มถ่วง ไฮโดรเจนที่เหลือจะเคลื่อนไปที่ริมขอบดวงอาทิตย์และระเบิดออกไป ขณะที่แกนในของฮีเลียมจะเผาผลาญ ดวงอาทิตย์จะมีขนาดใหญ่ขึ้น ดาวเคราะห์ชั้นในก็จะถูกดูดกลืน ขั้วน้ำแข็งบนดาวอังคารหลอมละลาย พายุลมร้อนจะโหมกระหน่ำใส่ดาวเคราะห์ชั้นนอก ดาวเสาร์จะถูกพัดจนเหลือแต่แกน วงแหวนน้ำแข็งละลายจนระเหยกลายเป็นไอ ดาวพฤหัสบดีที่เคยยิ่งใหญ่ จะต้องหมดความสำคัญลงไปเพราะว่าดวงจันทร์บริวารจะทำให้แผ่นน้ำแข็งละลายลงแล้วก่อให้เกิดน้ำท่วมอย่างรุนแรง



ระบบสุริยะของเรานี้จะไม่เหมือนเดิม ถ้าตอนนี้ดวงอาทิตย์กำลังกินตัวเองและอีกไม่นาน ก็จะหดตัวเล็กลงจนเหลือเป็นเพียง "ดาวแคระขาว" (white dwarf) เท่านั้น และสิ้นสุดชีวิตดาวฤกษ์ กลายเป็นดาวที่ตายดับไปในที่สุด และในขั้นสุดท้ายมันก็จะเหลือเพียงผงธุลี และความตายก็จะมาเยือนดาวเคราะห์ทุกดวง

เวลาใกล้หมดลงแล้วสำหรับระบบสุริยะนี้ ดวงอาทิตย์ที่ครั้งหนึ่งเคยหล่อเลี้ยงให้ชีวิต กำลังจะกลืนกินเราเข้าไป

มันจะปล่อยเถ้าธุลี ออกมาตามกระแสลมสุริยะ และจับตัวกันเป็นก้อน

แต่อีกไม่นานก็จะรวมตัวกันจนกลายเป็นดาวฤกษ์ดวงใหม่ ดาวเคราะห์ดวงใหม่และการถือกำเนิดชีวิตใหม่

ดาวฤกษ์ก็เหมือนกับสรรพสิ่งทั้วไปในเอกภพ มีการเกิด การคงอยู่ และการแตกดับไปตามการเวลา คือ มีวิวัฒนาการ ดาวฤกษ์เกิดจากมวลสารระหว่างดวงดาวมารวมกันเกิดแรงอัดตัวเป็นดาวฤกษ์ และเกิดจากการยุบตัวของเนบิวลาแต่จุดจบต่างกันขึ้นอยู่กับมวลสารดาวฤกษ์ที่มีมวลน้อย ใช้เชื้อเพลิงในอัตราที่น้อย ทำให้มีช่วงชีวิตที่ยาวและจบชีวิตลงโดยไม่มีการระเบิดพลังงานของดาวฤกษ์เกิดจากปฏิกิริยานิวเคลียร์ฟิวชัน เนื่องจากใจกลางของดาวฤกษ์มีอุณหภูมิสูงมากทำให้ธาตุไฮโดรเจนหลอมตัวกันเป็นธาตุฮีเลียม มวลสารจะเปลี่ยนไปเป็นพลังงาน ดังนั้น ทุก ๆ นาทีที่เกิดพลังงานนิวเคลียร์ฟิวชันจะมีการเปล่งแสงและพลังงานออกมารอบ ๆ จนกว่ามวลไฮโดรเจนจะลดดลงจนไม่เกิดปฏิกิริยา




หมายเหตุ นิวเคลียร์ฟิวชัน คือปฏิกิริยาทางนิวเคลียร์ระหว่างนิวเคลียสเบาสองตัวมารวมกัน ซึ่งหลังจากการรวมแล้ว จะได้นิวเคลียสใหม่ซึ่งไม่เสถียร นิวเคลียสนี้จะแตกตัวออก และให้พลังงานที่สูงออกมา กระบวนการนี้เป็นสิ่งที่เกิดขึ้นอยู่ตลอดเวลาในดวงอาทิตย์ และดาวฤกษ์ต่างๆ



ดาวฤกษ์ที่มีมวลน้อย เช่น ดวงอาทิตย์มีแสงสว่างไม่มากใช้เชื้อเพลิงในอัตราที่น้อยจึงมีชีวิตยาว และจบลงด้วยการไม่ระเบิด แต่จะกลายเป็นดาวแคระขาว สำหรับดาวฤกษ์ ที่มีมวลพอๆกับดวงอาทิตย์ จะมีช่วงชีวิตและการเปลี่ยนแปลงแบบเดียวกับดวงอาทิตย์





ดาวฤกษ์ที่มีขนาดใหญ่ มีมวลมาก สว่างมาก อาจจะใช้เชื้อเพลิงอย่างสิ้นเปลืองในอัตราสูงมากจึงมีช่วงชีวิตสั้นกว่า และจบชีวิตด้วยการระเบิดอย่างรุนแรง





จุดจบของดาวฤกษ์ที่มวลมาก คือการระเบิดอย่างรุนแรง ที่เรียกว่า ซูเปอร์โนวา (supernova) แรงโน้มถ่วง จะทำให้ดาวยุบตัวลงกลายเป็นดาวนิวตรอนหรือหลุมดำ ในขณะเดียวกันก็มีแรงสะท้อนที่ทำให้ส่วนภายนอกของดาวระเบิดเกิดธาตุหนักต่างๆ เช่น ยูเรเนียม ทองคำ ฯลฯ ซึ่งถูกสาด กระจายออกสู่อวกาศกลายเป็นส่วนประกอบของเนบิวลารุ่นใหม่ และเป็นต้นกำเนิดของดาวฤกษ์รุ่นต่อไป เช่นระบบสุริยะก็เกิดจากเนบิวลารุ่นหลัง ดวงอาทิตย์และบริวารจึงมีธาตุต่างๆทุกชนิด เป็นองค์ประกอบ ดังนั้น เนบิวลา ดาวฤกษ์ การระเบิดของดาวฤกษ์ ดาวเคราะห์ โลกของเรา สารต่างๆและชีวิตบนโลก จึงมีความสัมพันธ์กันอย่างลึกซึ้ง





เปรียบเทียมความสว่างและอันดับความสว่างจากสิ่งมี่เราเห็นด้วยตาเปล่า

ความสว่าง (brightness) ของดาวฤกษ์เป็นพลังงานแสงจากดาวฤกษ์ดวงนั้นใน 1 วินาทีต่อ 1 หน่วยพื้นที่ ความสว่างของดาวฤกษ์จะบอกในรูปของอันดับความสว่าง (magnitude) ซึ่งไม่มีหน่วย อันดับความสว่างเป็นเพียงตัวเลขที่กำหนดขึ้นเพื่อแสดงการรับรู้ความสว่างของผู้สังเกตดาวฤกษ์ด้วยตาเปล่า ดาวที่มีความสว่างมาก อันดับความสว่างยิ่งน้อย ส่วนดาวที่มีความสว่างน้อย อันดับความสว่างจะมีค่ามาก โดยกำหนดว่า

 ดาวฤกษ์ที่ริบหรี่ที่สุดจะมีอันดับความสว่าง 6

 ดาวฤกษ์ที่สว่างที่สุดจะมีอันดับความสว่าง 1

 อันดับความสว่างสามารถนำไปใช้กับดวงจันทร์และดาวเคราะห์ได้



 ถ้าอันดับความสว่างของดาวต่างกัน n แสดงว่าดาวทั้งสองดวงจะสว่างต่างกัน (2.512)nเท่า





อันดับความสว่างของดาวฤกษ์

แบ่งเป็น 2 ประเภท คือ

 อันดับความสว่างปรากฏ เป็นอันดับความสว่างของดาวฤกษ์ที่สังเกตได้จากโลกที่มองเห็นด้วย ตาเปล่า แต่ไม่สามารถเปรียบเทียบความสว่างจริงของดาวแต่ละดวงได้ เนื่องจากระยะทางระหว่างโลกและดวงดาวมีผลต่อการมองเห็นความสว่าง ดาวที่มีความสว่างเท่ากันแต่อยู่ห่างจากโลกต่างกัน คนบนโลกจะมองเห็น ดาวที่อยู่ใกล้สว่างกว่าดาวที่อยู่ไกล

 อันดับความสว่างที่แท้จริง เป็นความสว่างจริงของดวงดาว การบอกอันดับความสว่างที่แท้จริงของดวงดาวจึงเป็นค่าความสว่างปรากฏของดาวในตำแหน่งที่ดาวดวงนั้นอยู่ห่างจากโลกเท่ากัน คือ กำหนดระยะทาง เป็น 10 พาร์เซก หรือ 32.61 ปีแสง เพื่อให้สามารถเปรียบเทียบความสว่างจริงของดาวได้
จากข้อความข้างต้นทำให้ทราบว่า อันดับความสว่างปรากฏและอันดับความสว่างแท้จริงมีค่าไม่เท่ากัน เช่น ดาวพรอกซิมาเซนเทารีในกลุ่มดาวเซนทอร์มีอันดับความสว่างปรากฏเป็น 10.7 แต่มีอันดับความสว่างแท้จริงเป็น 14.9



สีและอุณหภูมิของดาวฤกษ์

ถ้าเราดูให้ดีแล้วจะเห็นว่าดาวฤกษ์แต่ละดวงนั้นมีสีไม่เหมือนกันแต่เดิมนั้นมีการจำแนกสีดาวฤกษ์ออกเป็น 4 ประเภท คือ แดง ส้ม เหลือง และขาว แต่ละสีแทน อุณหภูมิของดาวฤกษ์ สีขาวแทนดาวฤกษ์ที่ร้อนจัดที่สุด ส่วนสีแดงแทนดาวฤกษ์ที่ร้อนน้อยที่สุด การให้สีอย่างนี้ก็คล้ายกับสีของชิ้นเหล็กที่กำลังถูกไฟเผา ในตอนแรกมันจะร้อนแดงก่อน ต่อมาเมื่ออุณหภูมิสูงขึ้นสีของมันก็จะเปลี่ยนไปเรื่อย ๆ จนกระทั่งเป็นสีขาวแกมน้ำเงินในที่สุด แต่นักดาราศาสตร์ปัจจุบันได้จำแนกสีของดาวฤกษ์ตามอุณหภูมิของมันเป็น 7 ประเภทใหญ่ๆ



สีของดาวฤกษ์นอกจากจะบอกอุณหภูมิของดาวฤกษ์แล้ว ยังสามารถบอกอายุของดาวฤกษ์ด้วย ดาวฤกษ์ที่มีอายุน้อยจะมีอุณหภูมิที่ผิวสูงและมีสีน้ำเงิน ส่วนดาวฤกษ์ที่มีอายุมากใกล้ถึงจุดสุดท้ายของชีวิตจะมีสีแดงที่ เรียกว่า ดาวยักษ์แดง มีอุณหภูมิผิวต่ำ ดาวฤกษ์แต่ละดวงจะมีสิ่งที่เหมือนกัน คือ องค์ประกอบหลัก ได้แก่ ธาตุไฮโดรเจน และธาตุฮีเลียม พลังงานของดาวฤกษ์ทุกดวงเกิดจากปฏิกิริยาเทอร์มอนิวเคลียร์ที่แก่นกลาง ของดาว แต่สิ่งที่ต่างกันของดาวฤกษ์ ได้แก่ มวล อุณหภูมิผิว ขนาด อายุ ระยะห่างจากโลก สี ความสว่าง ธาตุที่เป็นองค์ประกอบ และวิวัฒนาการที่ต่างกัน





วิธีวัดระยะห่างระหว่างดวงดาว

ดาวฤกษ์อยู่ห่างจากโลกมาก และระยะระหว่างดาวฤกษ์ด้วยกันเองก็ห่างไกลกันมากเช่นกัน การบอกระยะทางของดาวฤกษ์จึงใช้หน่วยของระยะทางต่างไปจากระยะทางบนโลก ดังนี้

ปีแสง (lightyear หรือ Ly.) คือ ระยะทางที่แสงเดินทางในเวลา 1 ปี อัตราเร็วของแสงมีค่า33108 เมตร/วินาที ดังนั้นระยะทาง 1 ปีแสงจึงมีค่าประมาณ 931012 กิโลเมตร เช่น ดวงอาทิตย์อยู่ห่างจากโลก 8.3 นาทีแสง หรือประมาณ 150 ล้านกิโลเมตร ดาวแอลฟาเซนเทารีในกลุ่มดาวเซนทอร์อยู่ห่างจากโลก 4.26 ปีแสง หรือ 4031012 กิโลเมตร เป็นต้น

หน่วยดาราศาสตร์ (astronomical unit หรือ A.U) คือ ระยะทางระหว่างโลกและดวงอาทิตย์ ระยะทาง 1 A.U มีค่า 150 ล้านกิโลเมตร

พาร์เซก (parsec) เป็นระยะทางที่ได้จากการหาแพรัลแลกซ์ (parallax) คือการย้ายตำแหน่งปรากฏ ของวัตถุเมื่อผู้สังเกตอยู่ในตำแหน่งต่างกันของดาวดวงนั้น ซึ่งเป็นวิธีวัดระยะห่างของดาวฤกษ์ที่อยู่ค่อนข้างใกล้โลกได้อย่างแม่นยำกว่าดาวฤกษ์ที่อยู่ไกลมาก หลักการของแพรัลแลกซ์คือ การเห็นดาวฤกษ์เปลี่ยนตำแหน่ง เมื่อสังเกตจากโลกในเวลาที่ห่างกัน 6 เดือน เพราะจุดสังเกตดาวฤกษ์ทั้ง 2 ครั้งอยู่ห่างกันเป็นระยะทาง 2 เท่าของระยะทางระหว่างโลกและดวงอาทิตย์ 1 พาร์เซกมีค่า 3.26 ปีแสงดาวฤกษ์แต่ละดวงอยู่ห่างกันมาก ระบบดาวฤกษ์ที่อยู่ใกล้ระบบสุริยะที่สุดคือ อัลฟา เซนทอรี ในกลุ่มดาวม้าครึ่งคน ซึ่งอยู่ห่าง 4.26 ปีแสง การวัดระยะห่างจากโลกถึงดาวฤกษ์ ทำได้หลายวิธี คือ การหาแพรัลแลกซ์ คือการย้ายตำแหน่งปรากฏ ของวัตถุเมื่อผู้สังเกตุอยู่ในตำแหน่งต่างกันของดาวดวงนั้น

คือ มุมแพรัลแลกซ์ของดาวฤกษ์ที่ต้องการวัดระยะห่าง มีหน่วยเป็นฟิลิปดา และแปลงค่าเป็นหน่วยเรเดียน





จากวิวัฒนาการทั้งหมดไม่ว่าจะเป็นการเกิดของดาวฤทธิ์ หรือความแตกต่างระหว่างสี อุณหภูมิ ขนาด ไม่ว่าจะเป็นสิ่งใดก็มักเกิดจากความเป็นธรรมชาติของสิ่งเหล่านั้นเอง ซึ่งหากเราศึกษาให้มากก็จะสามารถคิดและวิเคราะห์สิ่งเหล่านี้ได้อย่างถูกต้องและแม่นยำ.

จำนวนการดูหน้าเว็บรวม